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ABSTRACT
◥

In animal models of cancer, oncologic imaging has evolved from
a simple assessment of tumor location and size to sophisticated
multimodality exploration of molecular, physiologic, genetic,
immunologic, and biochemical events at microscopic to macro-
scopic levels, performed noninvasively and sometimes in real time.
Here, we briefly review animal imaging technology and molecular
imaging probes together with selected applications from recent
literature. Fast and sensitive optical imaging is primarily used to
track luciferase-expressing tumor cells, image molecular targets
with fluorescence probes, and to report on metabolic and physio-
logic phenotypes using smart switchable luminescent probes.
MicroPET/single-photon emission CT have proven to be two of

the most translational modalities for molecular and metabolic
imaging of cancers: immuno-PET is a promising and rapidly
evolving area of imaging research. Sophisticated MRI techniques
provide high-resolution images of small metastases, tumor inflam-
mation, perfusion, oxygenation, and acidity. Disseminated tumors
to the bone and lung are easily detected by microCT, while
ultrasound provides real-time visualization of tumor vasculature
and perfusion. Recently available photoacoustic imaging provides
real-time evaluation of vascular patency, oxygenation, and nano-
particle distributions. New hybrid instruments, such as PET-MRI,
promise more convenient combination of the capabilities of each
modality, enabling enhanced research efficacy and throughput.

Introduction
Recent technological developments in scanner design and

advances in image reconstruction have secured the rapid applica-
tion of noninvasive imaging for detection, characterization, and
monitoring of cancer etiology in a variety of animal models (1–3).
Obvious advantages arise from the ability to study structure,
metabolism, and function of cancer cells and cancer supporting
microenvironment longitudinally, without the need for necropsy.
Indeed, imaging is noninvasive and repetitive studies are performed
in the same animals, with each animal serving as its own control.
Importantly, most imaging platforms can efficiently survey whole
animals, opening new horizons for studying metastatic disease.
Furthermore, many imaging technologies are intrinsically transla-
tional by applying identical imaging protocols, imaging tracers, and
image analysis to various species, thereby providing a bridge from

laboratory animals to companion animals and ultimately to humans
with the goal of easing the burden of human cancer (4–6). There are
various imaging platforms, also referred to as imaging modalities,
each based on a specific physical principle (Table 1), allowing
unique information/data to be generated. The primary reason for
applying a multi-platform imaging approach to cancer research is to
obtain comprehensive information from a cancer-bearing animal
(Table 2). The in vivo cancer imaging modalities are highly com-
plementary, providing a variety of quantitative biomarkers for
cancer cell tracking, and assessing tumor dimensions, pathophys-
iology, metabolism, and molecular composition (Table 2; Fig. 1),
but each has specific advantages and weaknesses (6–8). In this
review, we highlight the state-of-the-art applications of preclinical
multimodal multiscale imaging and focus on the specific applicability
to cancer research.

MRI and Spectroscopy
Magnetic resonance (MR) physics is complicated, but offers

extraordinary opportunities to manipulate tissue water signals based
on relaxation mechanisms, chemical exchange, flow, and diffusion to
reveal diverse anatomic, physiologic, and cellular properties of cancer
at high external magnetic fields. The most sensitive nucleus is the
proton, notably inH2O.AnatomicMRI: among all imagingmodalities,
MRI possesses the best soft-tissue contrast, which may still be
enhanced further using exogenous paramagnetic contrast agents.
Excellent spatial resolution can reveal ultra-small cancer lesions (as
small as 0.2-mm diameter with 9.4 T MRI), particularly in well-
structured tissues, such as the brain. MRI is the “gold-standard” for
orthotopic brain tumors and brain metastases (Fig. 1A, 1; refs. 9–13),
and is also widely applied for the detection of other soft-tissue lesions,
including liver (Fig. 1A, 2) and lung metastases (Fig. 1A, 3). Phys-
iologic MRI: beyond high-resolution anatomic MRI, tumor cellular
density and edema are easily quantified using diffusion-weightedMRI,
which is sensitive to restricted or enhanced diffusion of water mole-
cules, respectively (Fig. 1B, 7; refs. 2, 14, 15). Several recent publica-
tions reported increased apparent diffusion coefficients (ADC)
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associated with treatment-induced necrosis (16–19). Tissue oxygen-
ationmay be examined using oxygen-sensitiveMRI.Notably, apparent
transverse relaxation rate (R2

�) is sensitive to the concentration of
deoxyhemoglobin, as exploited in blood oxygen level–dependent
(BOLD) contrast and forming the basis of functional MRI to assess
neurologic activation (20). Meanwhile, so-called tissue oxygen level–
dependent (TOLD) MRI exploits the sensitivity of the spin-lattice
relaxation rate, R1, to the paramagnetic oxygen molecule (O2) itself
(Fig. 1B, 8; refs. 21–27). Noting the importance of hypoxia in cancer
development, aggressiveness, and response to therapy, an oxygen gas
breathing challenge has been shown to provide a simple effective
theranostic: well-oxygenated tissues show response to an oxygen gas
breathing challenge, whereas hypoxic tissue does not (28). This
approach has been demonstrated to provide a prognostic imaging
biomarker in rats with respect to stereotactic ablative radiothera-
py (24, 28) and is feasible in man (21, 29). Vascular MRI: the use of
exogenousMR contrast agents, namely gadolinium chelates as T1- and
iron oxide nanoparticles as T2-contrast, enables imaging of tumor
angiogenesis and changes in tumor vascularity. Intravenous injection
of gadolinium contrast agent allows direct visualization of tumor
vasculature by MR angiography (MRA, Fig. 1C, 11; ref. 30) or the
generation of tumor perfusion/permeability Ktrans maps using dynam-
ic contrast-enhanced (DCE)-MRI (Fig. 1C, 12; refs. 31–33). The use of

T2-contrast blood pool agents (based on ferumoxytol and other iron
oxide nanoparticles) allows susceptibility-contrast imaging to assess
tumor blood volume (32, 34). Cellular and receptorMRI: the same iron
oxide nanoparticles can be used for cell tracking. Breast cancer cells
prelabeled with ferumoxytol in vitro, could be detected in the brain by
T2-MRI following intravenous injection (Fig. 1E, 21; ref. 35). Mean-
while, injection of ferumoxytol itself leads to extensive uptake by
macrophages, which has been observed as reduced T2 signal, revealing
M1 (antitumor) or M2 (pretumor) activity (Fig. 1E, 22; refs. 36–38).
Some reports have explored the possibilities of using iron oxide- or
gadolinium-based contrast for detecting cell receptors, including
HER2 or C2 imaging in mouse models of breast cancer and precan-
cerous renal inflammation (39–41). In mouse prostate cancer models,
prostate specific membrane antigen (PSMA) receptors have been
successfully imaged using targeted iron oxide nanoparticles by T2-
MRI or a diamagnetic dextran-based chemical exchange saturation
transfer (CEST) MRI agent (see below; refs. 42–44). Receptor imaging
with MRI poses unique challenges for signal amplification to deposit
sufficient MRI contrast per receptor molecule for its detection.

Other nuclei and metabolic MR spectroscopy
Beyond proton MRI of tissue water, spectroscopic imaging can

detect several endogenous metabolites that occur at sufficiently high

Table 1. Physical principles of the main preclinical imaging modalities and their basic characteristics.

Modality Physical principles Whole-body/target organ Resolution scale

MRI/MRS External magnetic field; nuclear spin; radio wave pulses (for
magnetization of hydrogens in tissue water/metabolites)

4–6 cm FOV: brain, heart, liver,
pancreas, muscle

35–150 mm

microCT 3-Dimensional X-ray beam absorption and scattering Whole body/lung, bone 10–50 mm
US Reflection of high-frequency sound waves 2–4 cmFOV: heart, pelvic, liver,

pancreas, OBGYN
60–120 mm

Photoacoustic
(PAI, MSOT)

Spectrally selective near-infrared light excitation of chromophores,
inducing sound waves, providing tomographic images; notably
oxy-deoxyhemoglobin, exogenous 800CW-tagged agents and gold
nanoparticles

Tomographic slices of whole
mouse or larger animal to
4 cm depth; breast, thyroid

150 mm;
100
milliseconds

Optical: BLI and FLI Light emitting chemical reaction, often enzyme facilitated, e.g.,
luciferin/luciferase; photo-stimulated fluorescence chromophores

Whole body mm, depth
dependent

PET/SPECT Decay of short-lived radioactive betaþ and photon emitters Whole body 1.0–1.8 mm

Abbreviations: FOV, field of view; OBGYN, obstetrics and gynecology.

Table 2. The ultimate guide for choosing a specific imaging platform in a cancer research study design.

Tumor etiology Appropriate imaging modality to assess tumor characteristics Quantitative imaging biomarkers

Dimensions CT, T1/T2-MRI, US Tumor volume, mm3

Tumor diameter, mm
Cellularity Diffusion-weighted MRI ADC
Proliferation 18FLT-PET Standard uptake values (SUV)
Metastases CT, MRI ! BLI, PET Number of lesions ! qualitative
Vascularity/oxygenation/hypoxia MRA, DCE, CE-CT, PAI sO2-MSOT Exchange rate constants: Ktrans and Ve

Oxygen-enhanced MRI (BOLD/TOLD), 18F-MISO, 18F-FAZA PET DR2
� maps, DR1, AUC, tBV

HbO2; SO2
MSOT; SUV

Metabolism/tumor pH PET, FLI SUVs, SIs
1H-MRSI, hyperpolarized 13C-MRSI, 31P-MRS, 19F-MRS Metabolite concentrations, metabolite ratios,

metabolite maps
pH: 31P-MRS, CEST-MRI Intra-extracellular pH values and pH maps

Inflammation ImmunoPET, iron oxide NP T2-MRI, PFC 19F-MRI, EPR SUVs, DT2 relaxation times
Redox imaging SIs
Cellular tracking BLI, 19F-MRI, iron oxide T2-MRI, PET SIs, SUVs
Molecular targets SPECT, PET, BLI, FLI SUVs, SIs ! qualitative

Abbreviations: MSOT, multispectral optoacoustic tomography; NP, nanoparticle; PFC, perfluorocarbon nanoparticle; tBV, tumor blood volume.
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concentrations, such as lactate, glutamine, glutamate, creatine, N-
acetyl aspartate, g-aminobutyric acid, citrate, choline, and, most
recently, 2-hydroxyglutarate (2HG; ref. 45). The oncometabolite 2HG
accumulates in low-grade glioma, secondary glioblastoma, and acute
myeloid leukemia, owing to mutations in the metabolic enzymes
isocitrate dehydrogenase (IDH) 1 or 2. Mutant IDH1/2 aberrantly
produces 2HG (instead of ketoglutarate), which is detectable by 1H-
MRS or 13C-magnetic resonance spectroscopic imaging (MRSI) fol-
lowing hyperpolarized [1-13C]-glutamine administration (Fig. 1D, 17;
ref. 46). For 13C-MRSI, the most developed hyperpolarized probe
today is [1-13C]-pyruvate, which enables the detection of activated
lactate dehydrogenase in tumors (47). Isotopically labeled substrates
and metabolites are clearly seen against naturally low abundance
endogenous signals (e.g., 100% enriched isotopomers vs. 1.1% natu-
rally abundant 13C). Furthermore, hyperpolarization of 13C substrates
can be achieved by various techniques, including dynamic hyperpo-
larization (48) or parahydrogen-induced polarization (49) and leads to
a significant boost in the naturally low 13C MR spectroscopy (MRS)
signal. However, magnetization decays rapidly within minutes, neces-
sitating fast 13C MRI techniques. It has been shown that hyperpolar-
ized 13C-pyruvate/lactate MRS(I) is superior to 2[18F]fluoro-2-deoxy-
D-glucose 18FDG-PET (another metabolic imaging technique, see
below) in detecting treatment response to novel targeted therapies
and radiation (50, 51). Another approach to amplify MRS signals uses
CEST MRI, which detects the exchange of protons from hydroxyl,
amine, and amide groups to tissue water through the transfer of signal
loss, with repeated proton exchange enhancing the effective signal in
endogenous (52) and exogenous compounds (Fig. 1D, 18; ref. 53).
Amide proton transfer contrast, which is the CEST signal from
endogenous cellular proteins and peptides, differentiates viable glioma
from radiation necrosis (54). The use of D-glucose administration as a
contrast agent for noninvasive CEST detection of tumors has been
termed glucoCEST, and offers cancer detection with glucose as a
biodegradable, nontoxic contrast agent (55). CEST measurements of
regional pH, on the basis of the clinically approved X-ray contrast
agent, iopamidol, have been applied in kidney and lung cancer
models (56, 57). Another important nucleus for cancer characteriza-
tion by MRS is 31P for detection of phospholipid precursors, high
energy phosphates, and inorganic phosphate, which exhibits a pH-
sensitive chemical shift in the physiologic range (58), although it can be
difficult to discriminate intra- versus extracellular components. Mean-
while, 19F-MR agents can offer superior chemical shift response (59).
19F-MRI with perfluorocarbon agents has been used as an alternative
to iron oxide T2-MRI (see above and Fig. 1E, 22) to detect tumor-
associated macrophages with the benefit of no endogenous back-
ground signal (60). Perfluorocarbons exhibit very high gas solubility
and can serve asmolecular amplifiers, as exploited to assess tumor pO2

providing evidence for hypoxia, heterogeneity, and differential region-
al response to interventions (28, 59, 61).

X-ray CT
X-ray CT (microCT) is a high-resolution 3-dimensional (3D)

imaging technique; the physical principle of CT is based on scattering
and absorption of X-rays by tissues based on their electron density.
There are essentially three levels of attenuation yielding color-coded
contrast in CT: air (black), soft-tissue (gray shades), and bones (white).
Anatomic microCT: compared with MRI, CT is inferior in distin-
guishing soft tissues/organs, but the major strength of microCT lies in
supreme high-resolution (<50 mm) fast imaging of lungs and
bones revealing cancer lesions. Because bones are the most common

metastatic site for major cancers (including breast and prostate),
several studies reported the use of high-resolution (10 mm) microCT
for detecting engrafted breast cancer cells in the bone (Fig. 1A, 4;
ref. 62). Inhibition of the development of osteolytic bone lesions by
zoledronic acid has been reported in MDA-MB-231 breast xenograft
mice, also identifying IL1 as one of the key players for metastatic
development (63–65). Because of the inherent contrast between air and
tissue structures and the resulting attenuation of the X-rays passing
through tissue, microCT is particularly well suited for providing high-
quality anatomic information in the lung. With the development
of precancerous lung conditions, including inflammation (66), fibro-
sis (67), and emphysema (68), and their progression to lung
tumors (69–71), tissue structure becomes dense and can be easily
differentiated from both normal lung and airspace. The use of 3D
analysis to quantify tumor number, size, and progression is advanta-
geous over traditional histology (69) or macrodissection of the lung to
isolate tumors (70). Vascular microCT: gated respiratory-holding
techniques, fast acquisition times, and the introduction of novel metal
nanoparticles, such as exitron, allow lungmicrovasculature to be easily
visualized, simultaneously with lung tumor detection (Fig. 1C, 13;
refs. 72, 73). The low radiation dose of modern instruments makes
longitudinal microCT possible without long-term harm to ani-
mals (74). Recently, contrast-enhanced microCT has been applied to
visualize and map tumor vasculature in brain tumor and neuroblas-
toma mouse models (75–77).

Ultrasound
Ultrasound (US) uses high-frequency soundwaves and captures the

US energy reflected from interfaces in the body (“echoes”) that
separate tissue with different acoustic impedances, where the acoustic
impedance is the product of physical density and velocity of sound in
the tissue. Typically, a cyst appears sonolucent, because it gives few, if
any, echoes (being mostly water), while liver and spleen have solid
homogenous echo texture due to medium-level echoes from the
fibrous interstitial tissues. High-intensity echoes (increased echogeni-
city) are caused by calcification, fat, and air interface; however, they do
not propagate through bone. Among real-time modalities, US features
the highest frame rate up to 20,000 fps, enabling US-guided animal
procedures, such as orthotopic cell tumor injections and left ventric-
ular infusion of cancer cells, to generate models of metastasis while
avoiding lung engraftment (78, 79). Anatomic US: pancreatic cancer is
one of the most challenging mouse models for preclinical imaging. US
provides fast, precise quantification of pancreatic tumor burden
longitudinally and without contrast administration (Fig. 1A, 6;
refs. 80, 81). Vascular US: US is also an excellent technique to assess
tumor vasculature, for example, Doppler US measures the speed and
direction of flowing blood and has revealed vascular response to
antiangiogenic and Notch therapies in an orthotopic renal cell
carcinoma mouse model (82), as well as in irradiated rat fibrosar-
coma tumors (83). Considerable attention has been given to the
development of US-specific nanoparticles and microbubbles, which
may be used both for vascular imaging and as theranostic drug
carriers. The latest include VEGFR2-targeted microbubbles (84),
oxygen microbubbles (85, 86), and US-destructible microbubbles
for better delivery of paclitaxel-loaded nanoparticles in pancreatic
cancer models (87). Acoustic angiography (AA) is another contrast-
enhanced US technique, which uses the super-harmonic signals
from microbubbles to produce high-resolution maps of vasculature
with exceptional contrast because tissue yields no signal. Further-
more, AA can provide quantitative measurements of vascular
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Figure 1.

Representative multimodality images of animal cancer models (from left to right): A, Anatomic cancer detection in mouse models: (1) T2-weighted MRI of pediatric
cerebellar brain tumor (medulloblastoma) patient-derived xenograft; (2) gadolinium-enhanced T1-MRI of an orthotopic liver HCC; (3) proton density MRI of a lung
metastasis from breast cancer; (4) microCT of bone metastasis from engrafted breast cancer cells, adapted from ref. 62; (5) BLI of multi-organ breast cancer
metastases, adapted from ref. 62; and (6) 3DUSof amurinemammary gland tumor.B,Physiology-based images in rodent cancermodels: (7) highADC (brain edema
and ventricle hydrocephalus) and low ADC (highly proliferative medulloblastoma mouse patient-derived xenograft) from diffusion-weighted MRI; (8) BOLD and
TOLDMRI in response to oxygen gas breathing challenge in orthotopic human A549 lung tumor xenograft in nude rat, adapted from ref. 23; (9) PAI of subcutaneous
A549 human lung tumor growing in leg of nude rat showing endogenous HbO2 concentration before (top) and 48 hours after (bottom) administration of VDA,
based onmultiple wavelengths (MSOT), while breathing O2 (left) and corresponding DCE-MRI showing AUC reflecting reduced perfusion after VDA (right); and (10)
18F-MISO (hypoxia tracer) PET in a syngeneic Dunning R3327-AT1 rat prostate tumor, adapted from ref. 143. C, Imaging tumor vasculature in vivo: (11) high-resolution
MRA after gadolinium injection in an orthotopic rat isograft C6 gliomamodel; (12) DCE-MRI during gadolinium injection in mouse TRAMPmodel for prostate cancer,
adapted from ref. 33; (13) contrast-enhancedmicroCT of lung vasculature and small lung tumor using liposomal-iodinated contrast agent, adapted from ref. 72; and
(14) US enhanced with microbubbles reveals high perfusion in the rim of a flank pancreatic cancer xenograft in a mouse. (Continued on the following page.)
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density, blood perfusion, and vessel morphology, helpful to evaluate
response to antiangiogenic therapy in cancer (82). Quantitative
US (88) is obtained from B-mode images and raw radiofrequency
data and has been used to examine treatment response. Attenuation
coefficients and backscatter coefficients can be derived (89). On the
other hand, US elastography can visualize and quantify tissue
stiffness noninvasively (90). These data can be used as a potential
biomarker to assess changes in the tumor microenvironment,
particularly changes affecting the extracellular matrix, which may
affect treatment efficacy (91, 92).

Photoacoustic Imaging
Photoacoustic imaging (PAI) represents the newest addition to the

commercial armamentarium for preclinical imaging studies and pro-
gressively experimental investigations in man (93, 94). PAI exploits
spectrally selective pulsed laser excitation of chromophores generating
local thermoelastic tissue expansion, which is detected on the basis of
the resultant US acoustic waves, analogous to lightning generating
thunder. Application of multiple wavelengths allows spectral discrim-
ination, which has been applied to endogenousmolecules, such as oxy-
and deoxyhemoglobin (HbO2 and Hb) and melanin, and exogenous
agents, such as organic dyes, gold nanoparticles, and genetically
encoded proteins (95, 96). Indeed, spectral unmixing allows multiple
materials to be detected simultaneously. The technology is particularly
rapid, typically achieving single-slice images in <100 milliseconds,
but usually images are acquired at multiple wavelengths, and signals
may be averaged so that a typical acquisition time is 1–2 seconds.
Gating may become relevant for assessing rapid changes in tissues
subject to motion (97). Selection of an appropriate nonnegative data
reconstructionmodel is vital and choice of filters can enhance signal to
noise (98, 99).

Various commercial instruments are optimized for in vivo micro-
scopic, mesoscopic, whole-mouse tomographic, and human applica-
tions, and may incorporate additional US excitation to enhance
anatomic discrimination with typical spatial resolution approaching
100 mm at depths up to 5 cm.

The most effective application is assessment of tumor vasculature
based on the ability to identify and quantify relative Hb and HbO2

(Fig. 1B, 9) with effective studies of antiangiogenic therapy (100),
acute vascular disruption induced by combretastatin (101, 102), and
potentially prognostic observations following tumor irradiation (103).
It appears that response to an oxygen breathing challenge character-
ized as DsO2 is more closely related to perfusion and hypoxia than
baseline static parameters (102), for example, low CAIX expression
correlated with higher DsO2

MSOT. Blood volume and perfusionmay be

effectively examined using contrast agents, such as indocyanine
green (102, 104), or the liposomal formulation, Genhance (105).
Small-molecule dyes may be incorporated in targeted liposomal for-
mulations or used to directly label antibodies for detection of tumors
or revealing receptor expression (106). Gold nanoparticles (which
could also be used in microCT) exhibit exceptionally high photo-
acoustic activity based on surface plasmon resonance and may be
tuned to wavelengths in the range 600–1,000 nm based on size and
shape (96, 107). Additional innovations include “smart” activatable
probes, for example, sensitive to b-galactosidase activation (108) and
genetically encoded proteins, such as BphP1 (109). PAI essentially
bridges two modalities to exploit spectrally selective optical excitation
and robust spatial detection using US. It is very much an emerging
technology.

Optical Imaging: Bioluminescence and
Fluorescence

Two decades after its invention, in vivo optical imaging is now a
well-established standard method to noninvasively monitor biological
activity in mouse (and rat) research models. Optical imaging includes
four molecular imaging modalities: bioluminescence imaging (BLI),
fluorescence imaging (FLI), chemiluminescence, and Cherenkov
imaging. The relatively low threshold of implementation, as well as
the high sensitivity of in vivo BLI, make this whole-body, noninvasive
imaging technique a go-to method in preclinical research (Fig. 1A, 5
and E, 19; refs. 62, 110). Beyond tracking tumor growth and regression
via constitutive firefly luciferase expression for drug efficacy determi-
nation, the toolbox for this molecular imaging technique has vastly
expanded. Bioluminescence enzymes can be used to genetically tag
cells, viruses, bacteria, gene therapy, and, now also, antibodies and
their fragments (111). These enzymes, such as firefly, Renilla,Gaussia,
and NanoLuc luciferases, can be constitutively or inducibly expressed,
and as such used for ratiometric imaging, gene expression studies, or
dual labeling purposes (e.g., tracking T cells infiltrating tumor; Fig. 1E,
19; refs. 12, 112–114). Split luciferases to evaluate protein–protein
interaction, as well as split luciferin substrates to monitor apoptosis
have been designed and are utilized to evaluate mechanism of
action (115). Potential drawbacks of BLI are the need for cell trans-
fection and delivery of reactive substrate. Luciferin effectively crosses
barriers, such as blood–brain and placenta, and its very delivery to
tissue has been used to assess selective vascular destruction in
tumors (101, 116). Bioluminescence resonance energy transfer con-
structs, such as Antares, which red shifts the shorter wavelength
NanoLuc luciferase for better in vivo sensitivity, are also available (117).
Chemiluminescence compounds, substrates, and sensors are

(Continued.)D, Imaging tumormetabolism noninvasively: (15) abnormal 18F-FDG uptake in spleen, liver, and lymph nodes in transgenic leukemic (left) versus control
mouse, adapted from ref. 129; (16) increased gliobastoma multiforme uptake of 18F-ethyltyrosine without (left) and with bevacizumab treatment in an orthotopic
U87 gliomamousemodel, adapted from ref. 138; (17) representative heatmapof spectral data fromamousewith amutant IDH1 tumor xenograft following injection of
hyperpolarized [1-13C]-glutamine showing accumulation of 2HG in the tumor region only, which was referenced and normalized to a 5mmol/L [1-13C] urea phantom.
Dotted lines highlight the tumor, and the white line at the bottom represents 10 mm for scaling, adapted from ref. 46. (18) In vivo CEST-MRI of MDA-MB-231 breast
tumor xenografts showing representativeCESTMRImaps (top row,A), T1-weightedRAREMRI (bottom left,B), andMTRasym for three individualmicewith orthotopic
human MDA-MB-231 breast tumor xenografts, which were labeled M1 for mouse 1, M2 for mouse 2, and M3 for mouse 3. CEST shifts of amide, amine, and hydroxyl
resonances are highlighted in C, adapted from ref. 52. E, Cellular tracking using noninvasive imaging in mouse cancer models: (19) dual reporter BLI using spectral
unmixing algorithm. CBG99 cells were transplanted into the right striatum and PpyRE9 cells into the left striatum of the nudemouse on the right. A spectral unmixing
algorithmwas applied to select green light from CBG99 and red light from PpyRE9, adapted from ref. 191; (20) immuno-PET to image T lymphocytes using 89Zr-anti-
CD3 in normal (A) and BBN975 bladder cancer tumor-bearing (B) mice, adapted from ref. 147; (21) T2-weighted brain MRI of ferumoxytol-labeled breast cancer cells
after intracardiac injection, adapted from ref. 35; and (22) T2-weightedmaps formacrophage imaging after ferumoxytol injection in inflamedmammary gland tumor
mousemodel, adapted from ref. 37. CLN, cervical lymphnode;ALN, axillary lymphnode; ILN, inguinal lymphnode; T, thymus; S, spleen.F,Molecular imagingof tumor-
specific molecules: (23) tracking fluorescent micelles (red signal) to bioluminescent brain tumors (green) in anatomic context (124); (24) whole-body 18F-estradiol
(FES) PET/CT of ER in ER-positive and -negative bonemetastases inmousemodels of breast cancer; (25)whole-body SPECT/CTwith 111In-MSHpeptide (melanocyte
stimulating hormone) to image melanocortin-1 receptor in mouse B16/F1 melanoma model, adapted from ref. 154; and (26) CT and 18FDG-PET of nasal
adenocarcinoma in a canine patient with cancer (a 10-year-old standard poodle), adapted from ref. 187.
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luminophores that emit red shifted light upon chemiexcitation and
have been reported for detection ofH2O2,H2S, formaldehyde, b-galac-
tosidase, and nitroreductase activity (118–121). Dr. Cherenkov
received the Nobel Prize in 1958 for his discovery of the bluish hue
of light emitted by decaying radioisotopes. This same light emission
can be detected by screening mice injected with diagnostic radio-
isotopes, such as 18FDG, in an in vivo optical imaging system, adopting
the epithet of a poorman's PET scanner (122), andmay also be relevant
for radiation dosimetry (123). FLI, on the other hand, features both
genetically encoded fluorescent proteins (FP) and fluorescent dyes.
The powerful combination of BLI and FLI is exemplified by Zeng and
colleagues (Fig. 1F, 23; ref. 124), illustrating the tracking of fluorescent
micelles to bioluminescent brain tumors. In comparison with BLI,
however, the contrast to noise is less with fluorescence due to non-
specific autofluorescent noise originating from innate proteins in
tissue. This issue is being combatted with the discovery of red-
shifted FPs for better in vivo sensitivity, an initiative led by Nobel
laureate Dr. Roger Tsien (125). A second window of opportunity for
in vivo FLI is currently being explored in the short wavelength infrared
using ultra-bright near-infrared-IIb rare-earth nanoparticles. Here,
tissue absorption and light scattering are significantly reduced (126),
rendering higher resolution, higher depth penetration images. Crafty
alternatives have also been invented in which fluorescent sensors are
quenched until activated by an enzymatic reaction (e.g., cathepsin,
matrix metalloprotease, neutrophil elastase, etc.) or in which fluoro-
phores shift wavelength upon binding their target (127). A great advan-
tage of fluorophores is that they are also readily detectable ex vivo for
histopathologic evaluation. This is highly translational, and intrasurgi-
cal fluorescence imaging is actively being explored to both highlight
tumor burden, and also improve tumor margin of resection (128).
Preclinical optical cancer imaging begs for anatomic context, prompting
coregistration with anatomic imaging modalities, such as X-ray,
microCT, MRI, or, the recently developed, robotic US, which features
inexpensive, exogenous contrast-free 3D soft-tissue resolution (78).

PET and Single-Photon Emission CT
Nuclear medicine images are produced by giving the animal short-

lived radioactive isotopes and detecting their decay using a gamma
camera (single-photon emission CT, SPECT) or positron emission
(PET) scanner, revealing spatial and temporal distribution of target-
specific radiotracers and pharmaceuticals. An extensive array of
radiopharmaceuticals, or molecular probes exist (based on 11C, 13N,
15O, 18F, 124I, 64Cu, 68Ga, and 89Zr for PET and 123I, 99mTc, 201Ti, and
111In for SPECT), to image diverse aspects of tumor physiology and
biology. Data can reveal properties such as glucose metabolism, blood
volume and flow, tissue uptake, receptor binding, and oxygen utili-
zation. Because both modalities have relatively low spatial resolution,
CT is usually added for an anatomic overlay of the biodistribution of
the radiolabeled probe. Metabolic PET: 18FDG-PET is the most
established metabolic cancer imaging approach both preclinically and
clinically. Most tumors have a highly glycolytic phenotype (the War-
burg effect), providing the basis for increased uptake and accumulation
of the radioactive glucose analogue 18FDG, as shown in various mouse
models of leukemia, pancreatic, lung, colorectal, breast, prostate
cancers (Fig. 1D, 15; refs. 51, 129–132). Other tracers have recently
been introduced to elucidate abnormal metabolic phenotypes, includ-
ing, either 11C- or 18F-, acetate (mitochondrial metabolism; ref. 133),
choline (membrane phospholipids; refs. 133, 134), and amino acids in
brain tumors (glutamine, tyrosine, or methionine; Fig. 1D, 16;
refs. 135–138). Physiologic PET: several essential 18F-labeled tracers

should be mentioned here as potential (although not entirely specific)
markers for tumor cell proliferation (18F-fluorothymidine, 18FLT) and
hypoxia (18F-fluoroazomycin arabinoside, 18F-FAZA, and 18F-fluor-
omisonidazole, 18F-MISO). Radioactive thymidine is readily incorpo-
rated into DNA synthesis, making an increased uptake of 18FLT visible
on animal PET and correlating with increased ADC on diffusion-
weightedMRI, albeit exhibiting low specificity (139–142). 18F-MISO is
trapped in hypoxic areas as compared with BOLD and TOLD MRI
(Fig. 1B, 10; ref. 143).While 18F-MISO has been tested formany years,
its uptake selectivity is suboptimal and many other potential hypoxia-
imaging agents are under development and evaluation (e.g., 18F-FAZA
shows more rapid background clearance; refs. 144, 145). Cellular PET:
with the development of checkpoint inhibitor and immunotherapies,
significant efforts have been dedicated to develop so-called “immu-
noPET.” Several T lymphocyte–targeting molecules were radiochem-
ically labeled with long-lived radionuclides (such as 64Cu, 68Ga, and
89Zr). Following intravenous injection, intratumoral accumulation of
T lymphocytes has been noninvasively detected in response to check-
point inhibitor treatment (Fig. 1E, 20; refs. 146–148). Molecular PET/
SPECT: specific molecular targets have been visualized using PET- or
SPECT-based peptides, antibodies, and receptor binding ligands. One
of the most explored is hormone imaging, 18F-fluoroestradiol PET, as
used for preclinical and clinical imaging of estrogen receptor–positive
(ERþ) breast and ovarian cancer (Fig. 1F, 24; refs. 149–152). Recent
examples of hormone imaging include PET of androgen receptor in rat
brain (153). Several 111In/203Pb-labeled peptides for SPECT (154) and
68Ga-MSH for PET (155) have been developed to target the melano-
cortin-1 receptor in melanoma mouse models (Fig. 1F, 25). A
203Pb/212Pb theranostic pair has been reported for PSMA-based
a-particle–targeted radiopharmaceutical therapy in advanced prostate
cancer (156).

Other notable imaging technologies include magnetic particle
imaging (MPI) and electron spin resonance (ESR).MPI is an emerging
imaging modality that involves iron oxide nanoparticles. Unlike
MRI, MPI measures electronic moment of particles, which is more
sensitive than measuring changes in proton relaxation by MRI. The
detection is linear, sensitive (ng of iron/voxel), and has a high signal-to-
background ratio. Using MPI of iron oxide particles, kinetics of
accumulation of nanoparticles in rat tumors (157) and kinetics of
drug release in mouse breast tumors (158) were studied. Further
applications ofMPI are dependent on improving the acquisition speed
and resolution, as well as improving circulation and targeting prop-
erties of nanoparticles.

Electron paramagnetic resonance (EPR), also termed as ESR, has
been a research tool for many years, but remains somewhat esoteric in
cancer research, largely due to lack of available instrumentation. It
directly detects free radicals, but the extremely high frequencies tend to
limit tissue penetration, although effective studies have been per-
formed in mice and human teeth and tattoos (159). The most popular
application has been based on imaging signal line width and relaxation
mechanisms, which may be directly responsive to the presence of
oxygen and hence, pO2. Reporter agents may be injected directly into
tumors (e.g., India ink or chars; ref. 160), or infused systemically
(OX63- oxygen-measuring spin probe, coincidently the same material
is used to achieve hyperpolarization of 13C substrates for nuclear
magnetic resonance; ref. 161). Sensitivity to oxygen can be particularly
high at very low, radiobiologically relevant pO2 values (0–15 Torr) and
significant correlations have been observed between pO2 values and
radiation response (50, 160–162). A significant drawback of EPR is the
lack of integrated anatomic information, generally requiring that
separate MRI be performed and coregistered.
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Image-Guided Irradiation
Radiation plays an important role in cancer therapy; radiation-

based therapy has been applied to animal models for decades and
recently has undergone significant improvement in terms of applying
multimodality imaging to guide radiation planning (163, 164). Radi-
ation kills cancer cells by damaging DNA, either directly or indirectly,
through the creation of reactive oxygen species. Because radiation kills
both cancer cells and healthy cells alike, various methods are used to
increase the tumoricidal effects of radiation while minimizing damage
to the surrounding normal tissue, including spatial modulation of the
dose distribution to conform to a specific target region. While such
conformal dose distributions allow for significant reductions in normal
tissue toxicity, they also require onboard image guidance systems to
ensure the tumor is in the correct location when the radiation beam is
turned on. Modern animal irradiators incorporate multimodal imag-
ing detectors to precisely guide the radiation, combining the ability to
deliver targeted radiation treatments using a 225 kVp, gantry-mounted
X-ray tube with digital radiography, fluoroscopy, cone-beam CT,
and BLI (164, 165). Image-guided irradiation has been successfully
applied even for small orthotopic head and neck and lung lesions in
tumor-bearing mice (166, 167). The software also allows import of
existing imaging datasets from other modalities, such as MRI, which
often plays a crucial role for irradiating intracranial brain tumor
models (9, 163).

Image Analysis and Quantitative
Biomarkers

There is increasing interest in using imaging to develop noninvasive
quantitative imaging biomarkers (surrogate endpoints) for cancer
characterization. Indeed, most imaging read-outs are provided in both
qualitative and quantitative form (Table 2; ref. 168). This is especially
true for MRI, CT, and US, due to their high spatial resolution to
provide precise tumor dimensions, as well as number of suspicious
lesions/metastases (169, 170). The well-established mathematical
modeling algorithms for tracer kinetics allow quantification of tumor
vasculature based on gadolinium, nanoparticle, and microbubble
uptake for MRI, CT, and US, respectively (32, 34). The biomarkers
include the exchange rate constants (Ktrans), which reflect the efflux
rate of gadolinium contrast from blood plasma into the tissue/tumor
extravascular extracellular space, the volume of contrast agent distri-
bution Ve, or simply the area under enhancement curves after the
administration of contrast (19, 171–174). Finally, physiologic MRI
provides established quantitative endpoints in the form of ADCs from
diffusion-weighted MRI: low ADC (0.5–0.8 � 10�3 mm2/second)
indicates densely cellular aggressive tumors, while treatment-
induced necrosis results in increased ADC, up to 1.2 � 10�3 mm2/
seconds, and radiation-induced edema's ADC as high as 2.2 mm2/
second (17, 19). PET and SPECT tracer uptake is usually reported as
standard uptake values (SUV), which includes normalization to
injected dose and accounts for radionuclide decay (129, 130, 175).
Several studies report ratios of signal intensities (SI) of the tumor-to-
normal tissue (most often for brain tumors as tumor-to-brain ratios;
refs. 138, 174). Optical imaging (BLI and FLI) is rather semiquanti-
tative, but can provide SIs related to tumor volume or tissue perfu-
sion (11, 114), for example, the change in light emission from
luciferase-expressing tumors following an acute intervention, such as
a vascular disrupting agent (VDA) provides an indication of
vascular shutdown (101, 176, 177). Multimodality imaging ideally
combines the advantages of each modality, while mitigating their

deficiencies. Image registration is necessary when more than one
imaging modality is used. Histology can often serve as the ground-
truth for the validation of image-based biomarkers or new imaging
modalities.

Identifying noninvasive biomarkers to be used clinically as surro-
gate endpoints is not only valuable, but also promising. The advent of
machine learning and artificial intelligence in medical imaging has led
to the field of radiomics (170, 178–181). Like genomics and other
“-omics,” radiomics allows quantifiable characterization of image
features that provide a means to identify image-based biomarker
surrogates for response to cancer treatment. Cameron and colleagues
report a radiomics method, based on morphology, asymmetry, phys-
iology, and size (MAPS) using multiparametric MRI (182). Most
radiomics data have been reported for multicenter human studies,
because a large number of subjects needs to be enrolled, the number of
experimental animals in a single-imaging study often being a limiting
factor. As quantitative imaging and radiomics lead to more image-
based biomarkers, standardization and assessment of reproducibility
are becoming important and will require a centralized image archive
for multicenter preclinical studies.

Future Directions in Translational
Imaging

Imaging is highly translational by nature and murine models have
contributed enormously to the development of oncologic imaging
methodologies (183). However, the complex, heterogeneous tumor
microenvironment observed in human cancer is challenging to model
in an immunodeficient animal system, particularly in terms of immu-
notherapeutic strategies. Lack of optimal preclinical models for testing
is likely responsible for the dismal success rate (5%–8%) of cancer
therapeutics developed in murine models to eventually obtain FDA
approval for use in human patients (184). Dogs with naturally
occurring cancers provide an alternative, complementary system for
preclinical cancer research. The recent completion of the sequencing of
the dog genome has shown that most of their 19,000 genes are
orthologous or similar to humans (185). Companion animals live in
our homes and are exposed to similar environmental and lifestyle
influences. Their cancers grow slowly in an immunocompetent milieu,
allowing for complex carcinogenesis, genomic instability, and immune
avoidance to develop. Their size is such that serial biologic sampling
can be performed before, during, and after therapy. These patients are
imaged in human equipment, allowing for standardization of imaging
protocols, improved spatial resolution for more accurate quantitative
analysis, and adequate quality assurance of biodistribution for novel
imaging probes. Power Doppler US and contrast-enhanced US were
used to demonstrate tumor vascular response to antivascular therapy
in canine patients with cancer noninvasively (186). There are several
success stories to report today: 18FDG- and 18F-NaF PET/CT have
been successfully used in canine patients with cancer to detect head
and neck cancer and bone involvement of the nasal cavity (Fig. 1F, 23;
ref. 187). An iodinated nanoparticle CT tracer, initially developed and
validated in a murine lung cancer model (described above; ref. 73), has
been successfully used in a CT study of companion dogs with
spontaneous tumors (188). An anatomic and functional imaging probe
for a novel immunotherapeutic was developed in dogs with sponta-
neous lymphoma (189). A recombinant oncolytic vesicular stomatitis
virus that expresses a surface sodium-iodide symporter (NIS) protein
and IFNb was characterized. On the basis of clinical response to VSV-
IFNb-NIS therapy in dogswithT-cell lymphoma, a phase I clinical trial
in people has been started (NCT03017820; ref. 189). In a follow-up
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study, dogs administered with VSV-IFNb-NIS were evaluated to
determine whether 18F-tetrafluoroborate radiopharmaceutical that
binds to the cell surface NIS can be used to confirm successful viral
gene replication (190). Veterinary patients with naturally occurring
cancers may assist in the development of new molecular imaging
probes, shorten the approval process of oncologic therapies, and create
a mutually beneficial bridge between the fields of veterinary and
human oncology.

In summary, multimodal oncologic imaging has become a cutting-
edge necessity in preclinical (animal) cancer research. Understanding
the physical principles of each modality is essential for applying the
correct noninvasive imaging protocol to an animal-based study.
Development of imaging probes for multimodal imaging technologies
is also an important scientific and clinical goal. Each imagingmodality
brings specific insights into oncological questions and allows research-
ers to follow the biology, dictating the choice of the optimal reporter
and imaging modality to best characterize cancer phenotype (191).
The future also holds a big promise for PET/MRI (similarly to existing
PET/CT), combining two powerful molecular, physiologic, and struc-
tural techniques into one scanner. Finally, we anticipate the intro-
duction of novel predictivemodels and deep-learning algorithms (192)
in the near future for managing sophisticated and complex image
datasets in animal models of cancer.
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